Search results for "Raphanus sativus"
showing 5 items of 5 documents
Reactive oxygen species release, vitamin E, fatty acid and phytosterol contents of artificially aged radish (Raphanus sativus L.) seeds during germin…
2012
Abstract Seeds of Raphanus sativus L. subjected to accelerated ageing were investigated for reactive oxygen species (ROS) release and for content of vitamin E (tocopherol, TOC, and tocotrienol, TOC-3), fatty acids and phytosterols in seed coats, cotyledons and embryonic axes during germination. In unaged seeds, ROS release occurred mainly in seed coats of non-imbibed seeds and in seedlings (48 h of imbibition). TOC and TOC-3 were mainly represented by the c-isoform, abundant in embryonic axes. Fatty acids were mainly found in cotyledons. In seed coat and embryonic axis, phytosterols consisted mainly of sitosterols. The effects of ageing were mainly visible in embryonic axes at 48 h of imbib…
Microbiological investigation of Raphanus sativus L. grown hydroponically in nutrient solutions contaminated with spoilage and pathogenic bacteria
2012
Abstract The survival of eight undesired (spoilage/pathogenic) food related bacteria (Citrobacter freundii PSS60, Enterobacter spp. PSS11, Escherichia coli PSS2, Klebsiella oxytoca PSS82, Serratia grimesii PSS72, Pseudomonas putida PSS21, Stenotrophomonas maltophilia PSS52 and Listeria monocytogenes ATCC 19114T) was investigated in mineral nutrient solution (MNS) during the crop cycle of radishes (Raphanus sativus L.) cultivated in hydroponics in a greenhouse. MNSs were microbiologically analyzed weekly by plate count. The evolution of the pure cultures was also evaluated in sterile MNS in test tubes. The inoculated trials contained an initial total mesophilic count (TMC) ranging between 6.…
Ecotoxicity of halloysite nanotube–supported palladium nanoparticles in Raphanus sativus L
2015
Halloysite nanotubes (HNTs) are natural nanomaterials that are biocompatible and available in large amounts at low prices. They are emerging nanomaterials with appealing properties for applications like support for metal nanoparticles (NPs). The potential environmental impacts of NPs can be understood in terms of phytotoxicity. Current research has been focusing on HNT applications in cell or animal models, while their use in plants is limited so their ecotoxicological impact is poorly documented. To date there are no studies on the phytotoxic effects of functionalized halloysites (functionalized-HNTs). To develop a quantitative risk assessment model for predicting the potential impact of H…
Hygienic characteristics of radishes grown in soil contaminated with Stenotrophomonas maltophilia
2015
Background: Stenotrophomonas maltophilia is a plant growth-promoter. This bacterium is also implicated in human diseases. Thus, after the use of this bacterium in agriculture, the safety of the final products has to be verified. Due to the ubiquitous presence of S. maltophilia in soil, in this study a massive contamination was simulated to evaluate the growth and safety of Raphanus sativus L.. Results: Different inoculums and soil treatment conditions were tested. Soils were analysed weekly and the radishes at harvest for their microbial loads and presence/persistence of S. maltophilia LMG 6606. The concentration of the bacterium added in the different trials decreased during the first week…
Effects of ageing on peroxidase activity and localization in radish (Raphanus sativus L.) seeds.
2010
Peroxidase activity was assayed in crude extracts of integument, cotyledons and embryo axis of radish seeds, deteriorated under accelerated ageing conditions. Over five days of ageing, in which germination decreased from 100 to 52%, the enzyme activity in integument was higher than that in other seed parts, increasing in the first days of ageing and then decreasing sharply in extremely aged seeds. Polyacrylamide gel electrophoresis analysis showed four peroxidase isoenzymes with MM of 98, 52.5, 32.8 and 29.5 kDa in the embryo axis of unaged seeds, and only the 32.8 and 29.5 kDa MM isoforms in the integument and cotyledons. In these parts of the seed, only the 29.5 kDa MM isoenzyme increased…